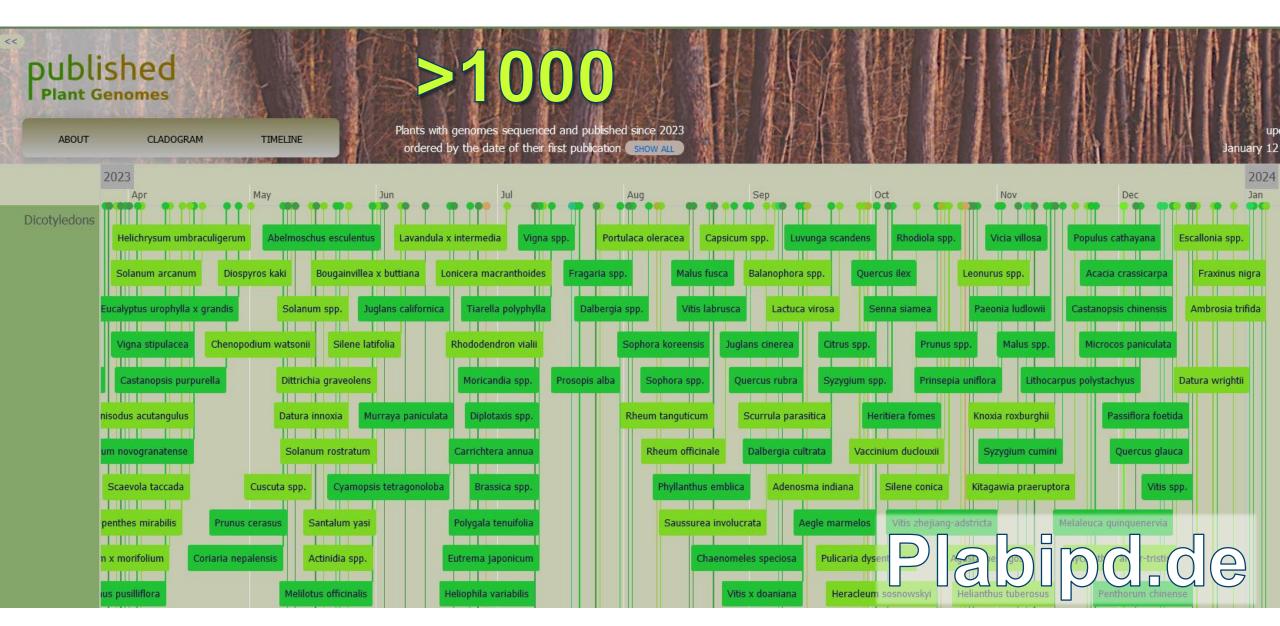
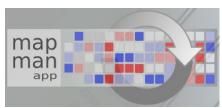
DATA INTEGRATION AND LINKING OF GENOMIC, METABOLOMIC AND TRANSCRIPTOMIC DATA USING MAPMAN

14. FEB. 2024 | BJÖRN USADEL IBG-4, FORSCHUNGSZENTRUM JUELICH, GERMANY

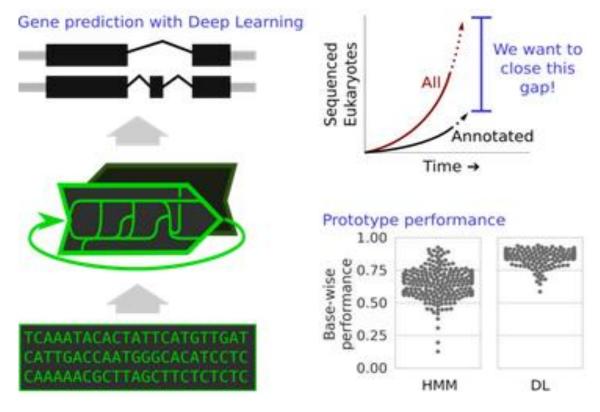


GWAS, GENOMES AND THEN?

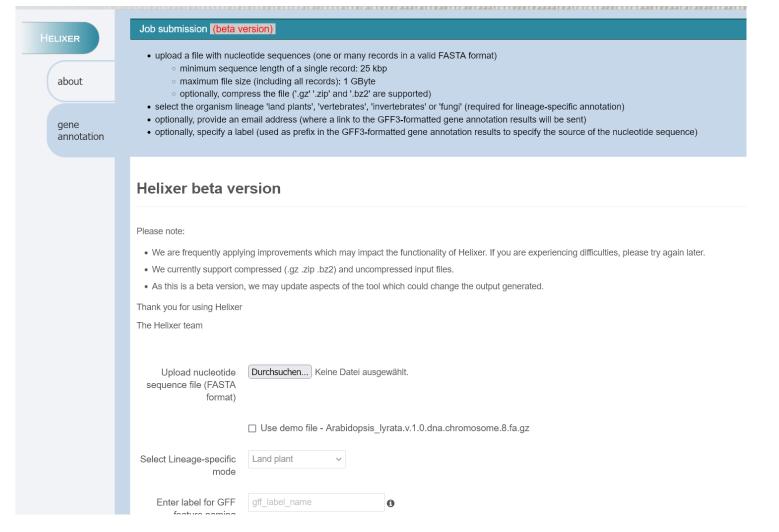

Gene Finding with Helixer

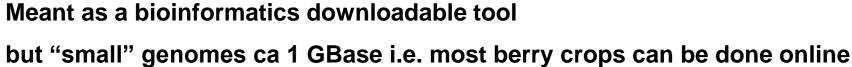
Functional Gene Prediction with Mercator4

Visualisation of Omics Data with MapMan



Who has not had to deal with V1, V2 etc of gene annotation? Gene finding is <u>hard.</u>


Helixer uses Al to help – and often outperforms simple "full length" RNA sequencing endeavors


We use both but <u>nothing</u> is perfect. We can still find and improve genes in Arabidopsis now

WHAT DO ALL THE GENES/PROTEINS DO?

Job submission Result tree viewer Result Heatmap viewer Protein O DNA ¹ Sequence type ☐ Include Prot-scriber annotations (Beta version) **①** Include Swissprot annotations 6 Upload FASTA file Durchsuchen... Keine Datei ausgewählt. Use demo FASTA file Optional user provided job name Job name Email address Optional email address 0 Submit Job Reset

COMPARATIVE VIEW OF GENE NUMBERS

mercator4
protein function mapping

- - ▼ 9.1 | terpenoids
 - mevalonate (MVA) pathway
 - □ (3) (2) (2) acetyl-CoA C-acyltransferase *(ACAT1/2)
 - □ ③ 1 1 3-hydroxy-3-methylglutaryl-CoA synthase *(HMGS)
 - □ ③ ② ③ 1 3-hydroxy-3-methylglutaryl-CoA reductase *(HMGR)

 - □ (2) (1) (1) phosphomevalonate kinase *(PMK)
 - □ (1) (2) (1) (1) mevalonate diphosphate decarboxylase *(MVD1/2)
 - ☐ 1 2 2 1 isopentenyl diphosphate isomerase *(IDI1/2)
 - methylerythritol phosphate (MEP) pathway
 - - □ 1 1 1 D-xylulose kinase
 - □ 1 1 0 D-xylulose 5-phosphate transporter
 - 7 3 4 2 1-deoxy-D-xylulose 5-phosphate synthase *(DXS)
 - 2 1 1 2 1-deoxy-D-xylulose 5-phosphate reductase *(DXR)
 - 0 1 1 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase
 - 1 1 1 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase
 - 1 1 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase

CLASSES FOR ALL LAND PLANTS

Hierarchical framework consisting of 31-top-level categories (also called BINs).

- . 16 RNA processing
- 18 Protein modification

50 Enzyme classification

```
Phytohormone action
  1 Photosynthesis
   2 Cellular respiration
                                                            11.1 abscisic acid
   3 Carbohydrate metabolism
                                                                11.1.1 biosynthesis
   4 Amino acid metabolism
                                                                      11.1.1.1  zeaxanthin epoxidase *(ABA1)
   5 Lipid metabolism
                                                                         11.1.1.2 neoxanthin synthase *(ABA4)
   6 Nucleotide metabolism
   7 Coenzyme metabolism
                                                                         11.1.1.3 
neoxanthin biosynthesis cofactor *(NXD1)
   8 Polyamine metabolism
                                                                         11.1.1.4 
9-cis-epoxycarotenoid dioxygenase *(NCED)

    9 Secondary metabolism

                                                                         11.1.1.5 xanthoxin oxidase *(ABA2)

    10 Redox homeostasis

    11 Phytohormone action

                                                                         11.1.1.6  xanthoxin oxidase molybdopterin sulfurase *(ABA3)
· 12 Chromatin organisation

    11.1.1.7  abscisic aldehyde oxidase *(AAO)

· 13 Cell division

    14 DNA damage response

                                                                11.1.2 perception and signalling

    15 RNA biosynthesis

                                                                11.1.3 conjugation and degradation
                                                                11.1.4 transport
. 17 Protein biosynthesis

    19 Protein homeostasis

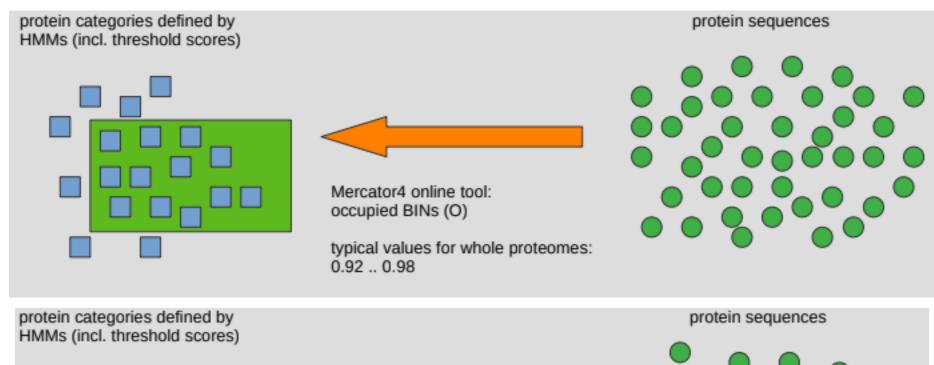
                                                                brassinosteroid

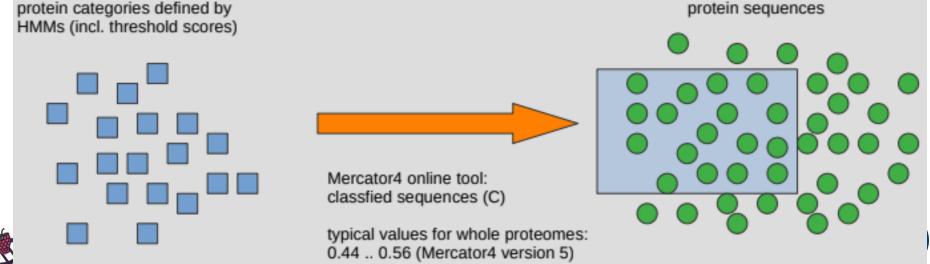
    20 Cytoskeleton organisation

                                                                 cytokinin
· 21 Cell wall organisation

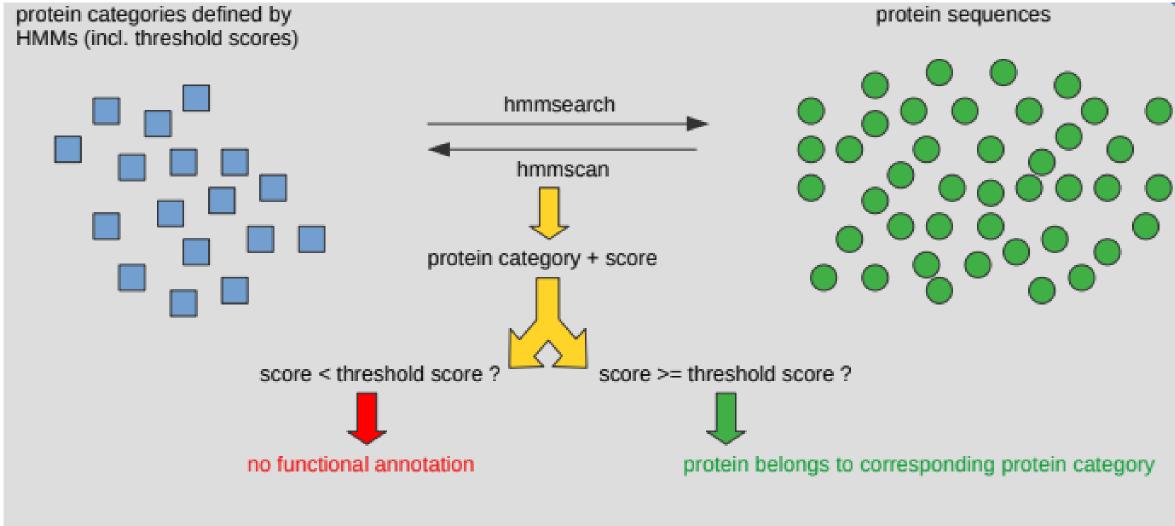
    22 Vesicle trafficking

                                                                 ethylene
· 23 Protein translocation
                                                                 gibberellin
· 24 Solute transport
                                                                jasmonic acid

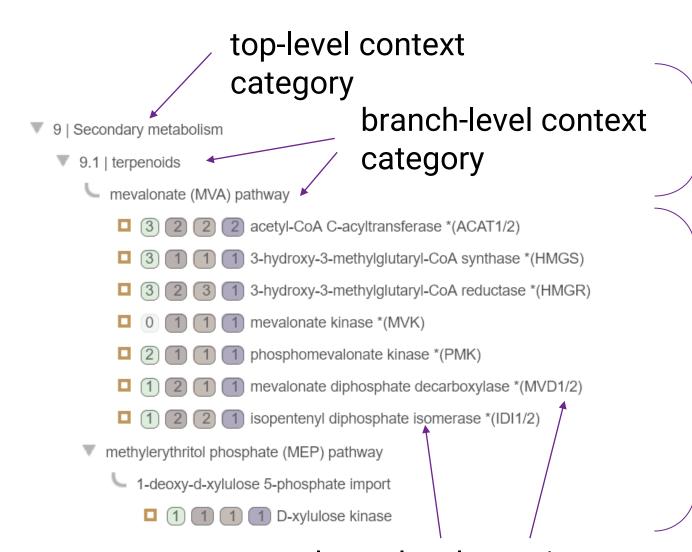

    25 Nutrient uptake


· 26 External stimuli response
                                                                 salicylic acid
· 27 Multi-process regulation
                                                                 strigolactone
· 28 Plant reproduction
· 30 Cłade-specific metabolism
                                                           11,10 karrikins
                                                                 signalling peptides
```


QUECK QUALITY OF PROTEOME



FUNCTIONAL ANNOTATION OF PLANT PROTEOMES



BIN STRUCTURE

Each child node is more specialised than its parent *BIN*. Protein sequences are assigned to leaf level.

Soon... Enzyme classes linked to metabolic reactions

context descriptions

protein descriptions

leave-level protein categories

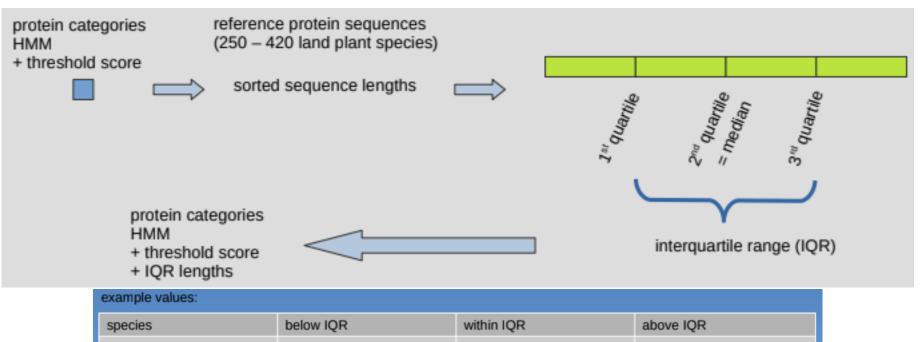
VERSION HISTORY

Annual release cycle (late summer -Autumn)

version	0.6 (2017)	1.0 (2018)	2.0 (2019)	3.0 (2020)	4.0 (2021)	5.0 (2022)	6.0 (2023)
protein categories	3395	4145	4500	4869	5251	5783	~ 6180
+ context nodes	+ 1068	+ 1339	+ 1491	+ 1608	+ 1702	+ 1817	+ 1940

VERSION HISTORY

Annual release cycle (late summer -Autumn)


version	0.6	1.0	2.0	3.0	4.0	5.0	6.0
	(2017)	(2018)	(2019)	(2020)	(2021)	(2022)	(2023)
protein categories	3395	4145	4500	4869	5251	5783	~ 6180
+ context nodes	+ 1068	+ 1339	+ 1491	+ 1608	+ 1702	+ 1817	+ 1940
Classified		47.88	49.73	52.49	54.42	56.08	57.83
Annotated		72.0	72.76	73.53	74.60	74.93	94.54

FRAGMENTED SEQUENCES SINCE VERSION 6

example values:							
species	below IQR	within IQR	above IQR				
Arabidopsis thaliana	0.150	0.728	0.122				
Glycine max	0.138	0.707	0.155				
Trifolium pratense	0.126	0.721	0.152				
Solanum pennellii	0.146	0.719	0.135				
Cuscuta campestris	0.202	0.594	0.204				
Cuscuta pentagona (from transcriptome)	0.447	0.436	0.117				
Peperomia fraseri (from transcriptome)	0.656	0.327	0.017				
	fragmented prot	eome					

Job name: pep6

Job ID: GFA-76bd35bbcdb46999f2fc89f9b6b4b212

Number of sequences: 27416

Sequence type: Protein
Prot-scriber False

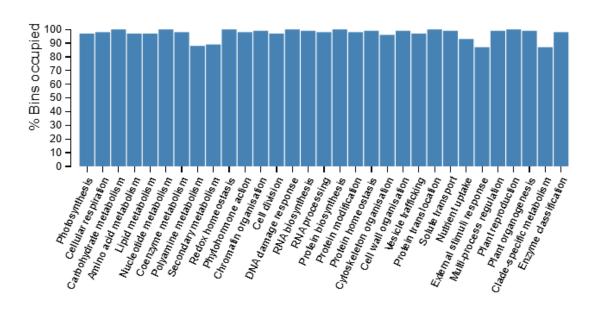
Swissprot False

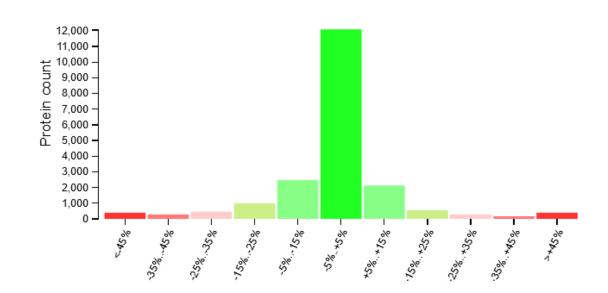
Submitted to cluster: 13.2.2024, 21:37:07

Job status: FINISHED

Last update: 13.2.2024, 21:47:08

Submitted sequences (S): 27416
Annotated sequences (A): 15854
Classified sequences (C): 15854
Occupied bins (O): 6115


Bins available (B): 6223


Summary 0: S:27416,A:57.83%,C:57.83%,O:98.26%,B:

6223

Mapping file for MapMan: MapMan mapping file

Annotated FASTA file: Mercator4 annotated FASTA file

PRESENCE ABSENCE AND COPY NUMBERS

- 9 | Secondary metabolism
 - ▼ 9.1 | terpenoids
 - mevalonate (MVA) pathway
 - □ (3) (2) (2) acetyl-CoA C-acyltransferase *(ACAT1/2)
 - (3) (1) (1) (1) 3-hydroxy-3-methylglutaryl-CoA synthase *(HMGS)
 - 3 (2) (3) (1) 3-hydroxy-3-methylglutaryl-CoA reductase *(HMGR)
- 0 1 1 mevalonate kinase *(MVK)
 - □ (2) (1) (1) phosphomevalonate kinase *(PMK)
 - 1 (1) (2) (1) (1) mevalonate diphosphate decarboxylase *(MVD1/2)
 - 1 (1) (2) (2) (1) isopentenyl diphosphate isomerase *(IDI1/2)
 - methylerythritol phosphate (MEP) pathway
 - - □ 1 1 1 D-xylulose kinase
 - □ 1 1 0 D transporter
 - ☐ (7) ☐ (4) ☐ 1-deoxy-D-xylulose 5-phosphate synthase *(DXS)
 - 2 1 1 2 1-deoxy-D-xylulose 5-phosphate reductase *(DXR)
 - 0 1 1 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase
 - 1 1 1 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase
 - 1 1 1 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase

O	Search	by	position	on	chromosome
_		-,			

chromosome (available position range)

Chr1 (1 .. 23207424)

100000

search reset

19 protein result(s)

	Plant species Sequence details	Description Functional context (based on MAPMAN4)	Orthologous proteins
1	Camelina sativa Csa01g001010	putative component of lumen subcomplex of chloroplast NDH Photosynthesis: photophosphorylation	protein family
2	Camelina sativa Csa01g001020	(yeast MED11)-like component of Mediator transcriptional regulatory complex RNA biosynthesis: RNA polymerase II-dependent transcription	protein family
3	Camelina sativa Csa01g001030	alpha-dioxygenase Lipid metabolism: lipid degradation	protein family
4	Camelina sativa Csa01g001040	putative ribonuclease H1 involved in R-loop homeostasis RNA biosynthesis: RNA polymerase II-dependent transcription	protein family
5	Camelina sativa Csa01g001050	protein of unknown function	protein family
6	Camelina sativa Csa01g001060	G-type subunit of vacuolar H(+)-ATPase peripheral V1 subcomplex Solute transport: primary active transport	protein family
7	Camelina sativa Csa01g001070	putative PIG-N-type protein of GPI biosynthetic pathway Protein modification: lipidation	protein family
8	Camelina sativa Csa01g001080	putative plastidial CRS/CFM-type RNA intron splicing factor RNA processing: organelle machinery	protein family
9	Camelina sativa Csa01g001090	putative plastidial CRS/CFM-type RNA intron splicing factor	protein family

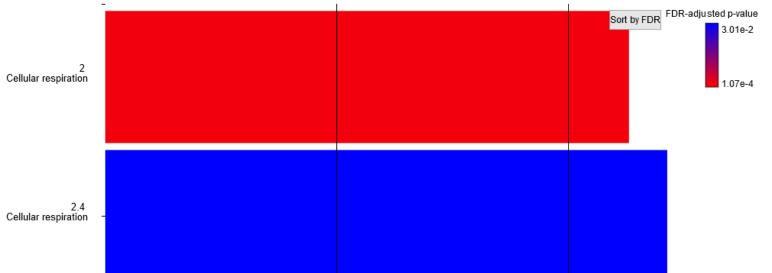


Mercator4 BIN enrichment analysis

_		_	
Resi	ult 1	Tah	lρ

MapMan BIN Chart

Enrichment Visualization

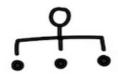

mercator4
protein function mapping

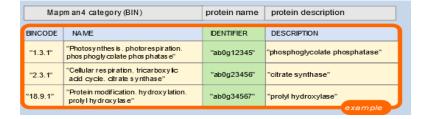
Toggle column: Genes of Interest (List)

Search:

MapMan4 category number	Context of Protein Function	#Genes of Interest IN MapMan4 category	#Genes of Interest NOT IN MapMan4 category	#Background Genes IN MapMan4 category	#Background Genes NOT IN MapMan4 category	Enrichment Factor	p-value \$	FDR-adjusted p-value
2	Cellular respiration	18	184	29	1441	4.52	0.0000027040082208663597	0.001616996916078083
2.4	Cellular respiration.oxidative phosphorylation	12	190	18	1452	4.85	0.00008388516891239334	0.03009799860576673
35	No Mercator4 annotation	40	162	569	901	0.51	5.988643766125384e-8	0.00010743626916428939
35.1	No Mercator4 annotation.other annotation available	40	162	505	965	0.58	0.000020617733553228634	0.009247053498623042
50	Enzyme classification	62	140	219	1251	2.06	1.8643729410822603e-7	0.00016723425281507876

Showing 1 to 5 of 5 entries





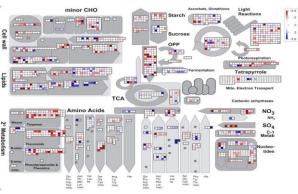
MAPMAN VISUALISATIONS

Protein function annotation

Run Mercator4

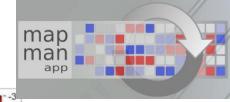
on genome

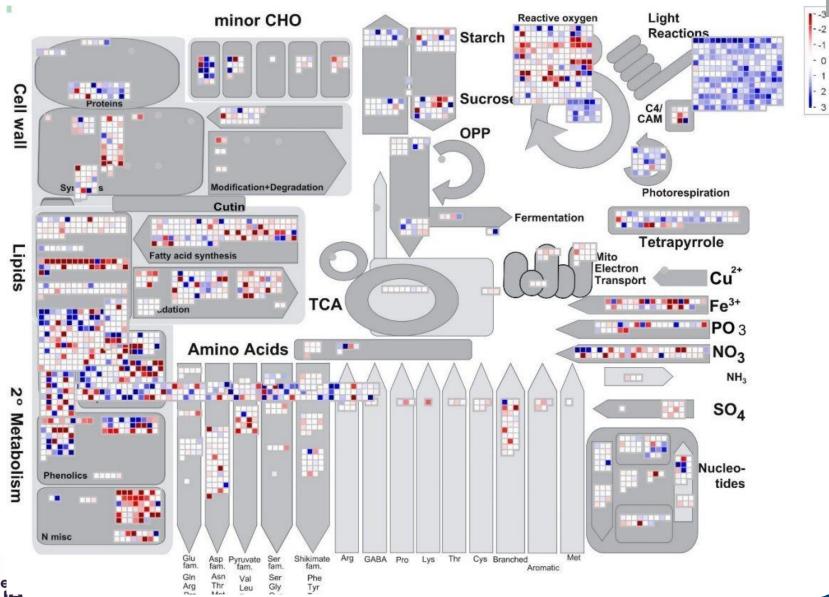
assembly

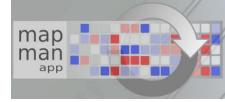

Gene expression data

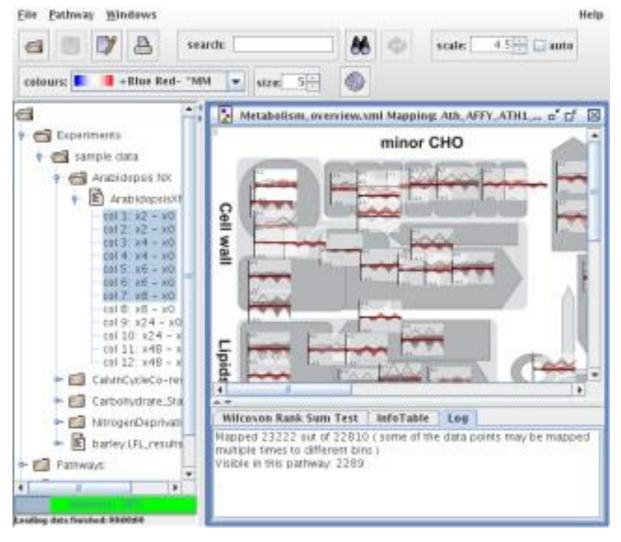
		condition 1	condition 2		
	ex pression chang	е	expression chang	е	
	log2 fold	significance	log2 fold	signific ance	
example					
	"cond1 vs. normal"	"cond1 vs normal"	"cond2 vs. normal"	"cond2 vs. normal"	
"ab0g12345"	-0.25	0	0.85	1	
	0.20		0.00		
"ab0g23456"	0.63	1	1.25	0	
		0	1.62		

Differential gene expression (snRNA, RNA-Seq, Microarray data), Metabolites, proteins Pathway diagram


Pathway you are interested in, available on the plabipd website






--1 - 0

- Dr. Alisandra Denton CEPLAS Düsseldorf (HELIXER)
- Dr. Rainer Scwacke, Sebastian Beier, Marie Bolger

